III. Dish \& Sphere Theorem
A. Recollections from Algebraic Topology

- $p: \tilde{X} \rightarrow X$ a covering space

1) then $p_{*}: \pi_{i}(\tilde{X}) \rightarrow \pi_{i}(x)$ an is omorphism $\forall i \geq 2$
2) If $f: Y \rightarrow X$ is a map st. $f_{x}\left(\pi_{l}(y)\right) \subset \rho_{x}\left(\pi_{1}(\tilde{x})\right)$ then f lifts to \tilde{X} we.

$$
\begin{aligned}
& \tilde{f},-\boldsymbol{x} \\
& y \underset{f}{\rightarrow} x
\end{aligned}
$$

- X connected space
\exists Hurewicz map $h_{n}: \pi_{n}(x) \rightarrow H_{n}(x)$
h_{1} on π_{1} is abelianization
(i se h_{1} onto and $\left.\operatorname{ker} u_{1}=\left[\pi_{1}(x), \pi_{1}(x)\right]\right)$
Hurewizz $T_{h}{ }^{m}$:
$\pi_{1}(x)=1$ and $n \geq 2$
Then $\pi_{i}(x)=0 \quad \forall 2 \leq i<n$

$$
\begin{aligned}
& \Leftrightarrow \\
H_{2}(x) & =0 \quad \forall z \leq i^{\prime}<n
\end{aligned}
$$

and if this holds then $h_{n}: \pi_{n}(x) \rightarrow H_{n}(x)$ is an isomorphism

- Whiteheads Th - : X,Y connected CW complexes $f: X \rightarrow Y$ a map

1) $f_{*}: \pi_{i}(x) \rightarrow \pi_{2}(y)$ an isomorphism for all ${ }_{i}$ then f a homotopy equivalence
2) $\pi_{1}(x) \cong \pi_{1}(y)=1$ and $f_{5}: H_{i}(x) \rightarrow H_{2}(y)$ an isomorphism for all i, then f is a homotopy equivalence

- X is a $K(\pi, 1)$ (or asphericol) if X is connected,

$$
\pi_{1}(x)=\pi \text {, and } \pi_{1}(x)=0 \quad \forall i \geq 2
$$

if X, Y are $K(\pi, 1)$ complex es then $X \approx Y$

- Poincare (Lefschetz) Duality:
M compact, oriented, n-manifold, then

$$
\begin{aligned}
& H_{q}(M) \cong H^{n-q}(M, \partial M) \\
& H_{q}(M, \partial M) \cong H^{n-q}(M)
\end{aligned}
$$

- Universal Coefficients T^{n} n:

$$
H^{n}(x, A ; \mathbb{Z}) \cong \operatorname{Free}\left(H_{n}(X, A ; \mathbb{Z})\right) \oplus \operatorname{Tor}\left(H_{n-1}(X, A ; \mathbb{Z})\right)
$$

B. Algebraic Topology and 3-manifolds
we can use simple algebraic topology to understand certain 3 -mils upto homotopy

Lemma 1:
M a closed connected 3 -mfd

$$
\pi_{1}(M)=1 \Leftrightarrow M \cong s^{3}
$$

later we will see much more is true
Proof: (\Leftarrow)
$\Leftrightarrow \pi_{1}(M)=1 \Rightarrow H_{1}(M)=0$ (so M orientable)

$$
H_{2}(M) \cong H^{\prime}(M) \cong \text { Free } H_{c}(M) \oplus \operatorname{Tor} H_{0}(0)=0
$$

Puncaré Univ. Conf.
Duality
$H_{3}(M) \cong H_{0}(M) \cong$ (since closed, conn. 3-mfol)
thus Hurewict th $\underline{m} \Rightarrow \pi_{3}(M) \cong H_{3}(M) \cong を$
$\therefore \exists f: s^{3} \rightarrow M$ sit. $[f]$ generates $\pi_{3}=H_{3}$
So we see $f_{*}: H_{3}\left(s^{3}\right) \rightarrow H_{3}(\mu)$ an som
$\therefore f_{*}$ an isomorphism on $H_{i} \forall i$
since S^{3}, M simply connected, Whitehead's th - implies f is a homotopy equiv.
lemma 2:
M non-compact, connected 3-manifold with $\partial M=\varnothing$

$$
\pi_{1}(M) \cong \pi_{2}(M) \cong 1 \Longleftrightarrow M \simeq \mathbb{R}^{3}
$$

Proof: $(\Leftarrow) \checkmark$
\Leftrightarrow non-compact $\Rightarrow H_{2}(M)=0 \quad \forall i \geq 3$

$$
\begin{aligned}
\pi_{1}(M) & =\pi_{2}(M)=0 \Rightarrow H_{1}(M)=H_{2}(M)=0 \\
& \therefore H_{i}(M)=0 \quad \forall i \geq 1
\end{aligned}
$$

let $f: \mu \rightarrow *$ be constant map f induces ism. on all $H_{i} \therefore f$ is a homotopy equiv

Earlici we looked at embedded 2-spheres What about non-embedded ones (ie. coming from $\pi_{2}(M)$)?
Tḧㅡ 3 (Sphere Tḧㄹ ; Papakyriäkapoulos 1957, Whitehead 1958)
let M be an orientoble 3 -manifold
$f: S^{2} \rightarrow \mu$ be a map $s t[f] \neq 0$ in $\pi_{2}(\mu)$
Then \exists an embedding $e: S^{2} \rightarrow M$ st.
$[e] \neq 0$ in $\pi_{2}(\mu)$
Thu 4 (Disk Th $\frac{\mathrm{m}}{}$, Dehn's lemma, Papa 1957):
let M be an orientable 3-manifold, $\sum \subset \partial M$ a surface, and $f:\left(D^{2}, s^{\prime}\right) \rightarrow(M, \Sigma)$ st. $\left[f I_{s^{\prime}}\right] \neq 1$ in $\pi_{l}(\Sigma)$
Then J an embedding $e:\left(D_{1}^{2} S^{\prime}\right) \rightarrow(M, \Sigma)$ st.
$\left.e\right|_{S^{\prime}}$ is essential (ie doesn't bound a disk) in \sum

We prove the disk th ${ }^{m}$ later (sphere th ${ }^{m}$ similar)
but first let's see some consequences
Basically both theorems turn algebaic info into geometric info. This is rare and very helpful!
lemma 5:
M an orientable 3-manifold. Then

$$
M \text { in reducible } \Longleftrightarrow \pi_{2}(M)=0
$$

Proof: $\Leftrightarrow \pi_{2}(M) \neq 0 \underset{\pi_{2} \underline{m}_{3}}{\Longrightarrow}$ J embedded 2-sphere S
with $[S] \neq 0$ in $\pi_{2}(\mu)$

$$
\therefore S \neq \partial(3-b a l l)
$$

$\therefore M$ is reducible,
(\Leftarrow) for this we need
Poricaré Laij (proven by Perelman ~2003) if M a 3 -manifold $\simeq s^{3}$ then $M \cong s^{3}$
let $S C M$ be an embedded sphere

$$
\begin{aligned}
\pi_{2}(M)=0 & \Rightarrow[s]=0 \text { in } \pi_{2}(M) \\
& \Rightarrow[s]=0 \text { in } H_{2}(M) \\
& \Rightarrow s \text { separates } M
\end{aligned}
$$

erencise: prove this!

$$
\text { so } M=A U_{s} B
$$

let $\tilde{M} \xrightarrow{P} M$ be the universal coven
$P^{-1}(A)=$ copies of $\tilde{A}(\tilde{A}$ univ coven of $\left.A)\right\}$ check this
$P^{-1}(B)=\| \quad \because \tilde{B}(\tilde{B} \cdots \quad \| B)\left\{\begin{array}{l}\text { uses that } 5 \\ \text { a } 2 \text {-sphere }\end{array}\right.$
$\partial \tilde{A}=1 \pi_{1}(A) \mid$ copies of S
$\partial \widetilde{B}=\left|\pi_{i}(B)\right|$
let \tilde{S}_{0} be a lift of S

$$
\left.\begin{array}{rl}
\pi_{2}(M)=0 \Rightarrow & \pi_{2}(\tilde{M})=0 \\
\pi_{1}(\tilde{M})=0
\end{array}\right\} \Rightarrow \begin{aligned}
& H_{2}(\tilde{M})=0 \\
& { }_{\text {Herewic }} \text { the }
\end{aligned}
$$

$\therefore\left[\tilde{S}_{0}\right]=0$ in $H_{2}(\tilde{\mu})$
$\therefore \tilde{S}_{0}$ separates $\tilde{M}=X U_{S_{0}} Y$
Maye-Vietoris gives

$$
\underset{\substack{u \\ \nVdash}}{\mathrm{H}_{2}\left(S_{0}\right)} \rightarrow \underset{\substack{11 \\ 0}}{H_{2}(X) \oplus H_{2}(Y)} \rightarrow \underset{\sim}{H_{2}}(\tilde{\mu})
$$

exercise: show so $\left[s_{0}\right]=0$ in $H_{2}(x)$ or $H_{2}(y)$
Lemma 6: say in $H_{2}(x)$
let M be a 3 -manifold, \sum be a component of ∂M that is compact
$[\Sigma]=0$ in $H_{2}(M) \Leftrightarrow M$ is compact and $\partial M=\Sigma$
$\therefore S_{0}=\partial X$ and X compact
X must be \tilde{A} or \tilde{B}, assume \tilde{A}
$\therefore \partial \tilde{A}=s_{0}$ and so $\pi_{1}(A)=1 \quad$ (since $\left.|\partial \tilde{A}|=1\right)$

$$
\therefore A=\tilde{A}
$$

$A \cup B^{3}$ is a closed 3-mifd with $\pi_{1}=1$
\therefore Policaré $\Rightarrow A \cup B^{3} \cong S^{3}$ and
So $A \cong B^{3}$
$\therefore S=\partial\left(A=B^{3}\right)$ so M is reducible

Proof of lemma 6:
(\Leftarrow) clear
$\Leftrightarrow[\Sigma]=0$ in $H_{2}(M) \Rightarrow \exists$ a compact submfd

$$
M_{0} \subset M \text { st. }[\Sigma]=0 \text { in } H_{2}\left(M_{0}\right)
$$

so we can assume M is compact need to show $\partial \mu=\Sigma$

Suppose not, long exact sequence of $(\mu, \partial \mu)$ gives
the inclusion
sends each generator of $H_{0}(\partial \mu)$ to ± 1 in $H_{0}(M)$

$$
(\text { say }+1)
$$

since i^{+}and i_{k} are ducal we see $i^{*}(1)=(1, \ldots, 1)$
$\therefore[\Sigma]$ not in the image of 2^{*} unless $\partial M=\Sigma$
$\therefore[\Sigma] \neq 0$ in $H_{2}(M)$ unless $\partial M=\Sigma$

Th m 7:
let M be a closed 3 -manifold with univ. cover \tilde{M}

1) if $\pi_{1}(\mu)$ is frise, then $\tilde{M} \cong s^{3}$

If $\pi_{l}(M)$ is infinite and M is prime then
2) $\tilde{M} \cong \mathbb{R}^{3}$ or
3) $M \cong S^{1} \times S^{2}$
(so $\tilde{M} \cong \mathbb{R} \times s^{2}$)

Proof:

1) $\pi_{1}(M)$ finite $\Rightarrow \tilde{M}$ compact, $\pi_{i}(\tilde{M})=1$

$$
\therefore \text { lemma } 1 \Rightarrow \tilde{\mu} \simeq s^{3}
$$

now Poiricaré $\Rightarrow \tilde{\mu} \cong s^{3}$
if $\pi_{1}(M)$ infinite and M prime, then $T_{1} \underline{\text { III }} 1 \Rightarrow M$ is $s^{\prime} \times s^{2}$ or irreducible
if not $S^{\prime} x s^{2}$ then lemma 5 says $\pi_{2}(M)=0$

$$
\therefore \pi_{1}(\tilde{M})=\pi_{2}(\tilde{M})=0
$$

\tilde{M} non-compact then $\Rightarrow \tilde{M} \simeq \mathbb{R}^{3}$ by lemma 2
the geometrization conjecture (discussed later)

$$
\text { then } \Rightarrow \tilde{M} \cong \mathbb{R}^{3}
$$

Corollary 8:

1) if M is a closed prime 3-manifold with $\pi_{i}(\mu) \cong z$ then $M \cong S^{1} \times s^{2}$
2) if M, N closed prince 3 -manifolds with $\pi_{l}(M) \cong \pi_{i}(N)$ infin ate, then $M \cong N$

Proof:

1) Claim: $\pi_{2}(M) \neq 0$
suppose not, then 2) of Th m 7 must hold

$$
\therefore \pi_{2}(\tilde{\mu}) \cong \pi_{2}(\mu)=0 \quad \forall i \geq 2
$$

let $f: s^{\prime} \rightarrow M$ be a mop st. [f] generates $\mathbb{Z} \cong \pi_{i}(M)$

$$
\pi_{r}\left(s^{\prime}\right)=0 \quad \forall i \geq 2
$$

$\therefore f: \pi_{2}\left(S^{\prime}\right) \rightarrow \pi_{2}(M)$ an isomorphism $\forall i$
so f is a homotopy equivalence

$$
\begin{aligned}
& \therefore H_{2}(M) \cong H_{2}\left(s^{\prime}\right)=0 \\
& \text { but } H_{2}(M) \cong H^{\prime}(M) \cong \text { free } H_{1}(M) \cong \nless< \\
\therefore & \pi_{2}(M) \neq 0
\end{aligned}
$$

since $\pi_{2}(M) \neq 0$, case 3) of $\pi_{h}{ }^{m} 7$ holds and so $M \cong S^{1} \times S^{2}$
2) M, N prime, $\pi_{l}(M)=\pi_{1}(N)$
if $\pi_{1}(M) \cong \mathbb{Z}$ then $M \cong 5^{\prime} \times 5^{2} \cong N$
if $\pi_{1}(\mu) \neq \mathbb{Z}$ then $\pi_{n} \underline{m}$ says $\tilde{M} \& \tilde{N} \cong \mathbb{R}^{3}$

$$
\therefore \pi_{2}(M) \cong \pi_{i}(N) \forall_{i}
$$

so M and N are " $K(\pi(M), 1)$ " spaces
ie. all hoer homotopy groups vanish and π is are ism.
this $\Rightarrow M \simeq N$ (if you have not seen this before
prove this!)
now again geometrization $\Rightarrow M \cong N$ (since provie) \& π_{1} infinite
Th - q:
let M be a compact, irreducible 3-manifold with $\pi_{1}(M)$ free, then M is a handlebody (or S^{3})
need 3 lemmas
lemma 10 :
let \sum be a closed surface $\not \equiv 5^{2}$ then π, τ is not free

Proof: suppose $\pi_{i} \Sigma$ is free for rank n let $X=V_{i=1}^{n} s^{\prime} F_{i}$ wedge of n auricles
then $\exists f: x \rightarrow \sum$ s.t. $f_{*}: \pi_{1} x \rightarrow \pi_{1} \tau$ is an ism. the universal cover of Σ is $\tilde{\mathcal{L}} \cong \mathbb{R}^{2}$

$$
\therefore \pi_{2}(\Sigma)=0 \quad \forall_{2} \geq 2
$$

we also know $\pi_{1}(X)=0 \quad \forall i \geq 2$
\therefore Hurewiciz says f is a homotopy equivalence so we must have $f_{*}:{\underset{2}{11}}_{H_{2}(X) \rightarrow \underset{11 s}{ }}^{H_{2}(\Sigma)}$ an som ϕ

Lemma 11:
any subgroup of a free group is free

Proof: G a free group then

$$
G \cong \pi_{1}(X) \quad \text { some } X=\widehat{V}_{i=1} s^{\prime}
$$

(if G not tritely generated use $\cdots \bigcirc \bigcirc \cdots$)
let $I f$ be a subgroup of G
then \exists a covering space $\tilde{x} \rightarrow X$ sit. $\pi_{i}(\tilde{x}) \cong H$ but \tilde{X} a 1 -complex so $\pi_{1}(\tilde{x})$ is free
lemma 12:
Ma compact orientable 3-manifold with $H_{l}(M)$ finite then $\partial M \cong \| S^{2}$

Proof: $H_{2}(\mu, \partial \mu) \cong H^{\prime}(\mu) \cong$ free $H_{1}(\mu)=0$

$$
\begin{aligned}
& \text { Poincare univ coff. } \\
& \text { duality the }
\end{aligned}
$$

duality
now the exact sequence for $(\mu, \partial M)$ gives

$$
H_{2}(M, \partial M) \rightarrow H_{1}(\partial M) \rightarrow H_{1}(M)
$$

finite
$\therefore H_{1}(\partial M)$ finite and sivice the only finite group that is H_{1} (orenitable ste) is O we see $H_{1}(\partial M)=0$

$$
\therefore \partial M=\Perp S^{2}
$$

Proof of 9 : suppose $\pi_{1}(M)$ free of rank n we prove theorem by induction on n $n=0: \quad \pi_{1}(M)=1$
if $\partial M=\varnothing$ then from $T^{m}-7 M \cong S^{3}$
if $\partial M \neq \varnothing$ then $\partial M=\Perp s^{2}$ (lemma 12)
M irreducible $\Rightarrow M \cong D^{3}$
(ie. handle body of genus 0)
$n \geq 1: M$ irreducible $\Rightarrow \pi_{2}(M)=0$ (lemma 5)
$\pi_{1}(M)$ infinite \Rightarrow universal cover \tilde{M} is non-compact

$$
\therefore H_{2}(\tilde{M})=0 \quad \forall 2 \geq 3
$$

we know $\pi_{i}(\tilde{M}) \cong \pi_{i}(M) \quad \forall 1 \geq 2$
$\therefore \pi_{2}(\tilde{\mu})=0$ and $\pi_{i}(\tilde{M})=0 \quad \forall_{2} \geq 3$ by Harewicz
let $X=\hat{V}_{i=1} s^{\prime}$
$\exists f: X \rightarrow M$ sit. $f_{*}: \pi_{i}(X) \rightarrow \pi_{i}(M)$ is is om $\forall i$
$\therefore f$ is a homotopy equivalence by Whitehead
$\therefore f_{4}: H_{2}(X) \rightarrow H_{2}(M)$ an som. \forall_{2}
so $H_{3}(M) \cong H_{3}(X)=0 \quad \therefore \partial M \neq \varnothing$
if some component of ∂M is S^{2} then M ivied

$$
\Rightarrow M \cong D^{3} \Rightarrow \pi_{1}(M)=1 ぬ
$$

so let Σ be a component of ∂M with genus $\Sigma>0$ by lemma $10 \& 11 \quad \pi_{1}(F) \rightarrow \pi_{1}(M)$ is not one-to-one
\therefore Disk $T_{h}{ }^{m}\left(T T^{m}-4\right) \exists$ embedded disk $D \subset M$ suck that $\partial D=D \cap \partial M$ is essential in Σ

2 cases:

1) D separates M

So $\overline{M W(D)}=M_{1} \Perp M_{2}$

$$
\pi_{1}(M) \cong \pi_{1}\left(M_{1}\right) * \pi_{1}\left(M_{2}\right)
$$

$\therefore \pi_{1}\left(m_{2}\right)$ free of rank n_{i} by lemmall
with $n_{1}+n_{2}=n$
and $\partial \mu_{i} \neq \varnothing$
Clavi: $n_{i}>0$
if not, say, $n_{1}=0$, then $M=D^{3}$
$\therefore \partial D$ bounds disk in $\sum \$$

$$
\therefore n_{i}<n
$$

Clearly μ_{j} is irreducible (check if not clear!)
\therefore by induction the M_{i} are handlebodie's
$\therefore M$ is a handlebody (lemma I. 1),
2) D does not separate M

So $\overline{M \backslash N(D)}=M_{0}$
$\pi_{1}(M) \cong \pi_{1}\left(\mu_{0}\right) * \mathbb{Z} \quad$ (check)
So $\pi_{1}\left(\mu_{0}\right)$ free of rank $<n$
M_{0} irreduceby and $\partial \mu_{0} \neq \theta$
$\therefore M_{0}$ a handlebody
So M is too
recall a knot K is the image of an embedding $f_{K}: S^{\prime} \rightarrow S^{3}$ $K_{1} \sim K_{2}$ (equivalent) if \exists an isotopy from $f_{K_{1}}$ to $f_{K_{2}}$
(recall isotopy extension says \exists an isotopy
$F_{t}: s^{3} \rightarrow s^{3}$ st. $F_{G}=c d$ and $f_{k_{2}}=F_{1} \circ f_{k_{1},}$
so \exists adiffeo $F_{1}: 5^{3} \rightarrow s^{3}$ st. $\left.F_{1}\left(K_{1}\right)=K_{2}\right)$
K is trivial if \sim the unknot $U=O$
the group of K is $\pi_{1}\left(S^{3} \backslash K\right)$

$$
K_{1} \sim K_{2} \Rightarrow \pi_{1}\left(s^{3}-k_{1}\right) \cong \pi_{1}\left(s^{3}-K_{2}\right)
$$

the exterior of K is $X_{k}=\overline{S^{3}-N(K)}$

$$
\begin{aligned}
& \partial x_{k}=T^{2} \\
& \pi_{1}\left(x_{k}\right) \cong \pi_{1}\left(s^{3}-k\right)
\end{aligned}
$$

note: $X_{u} \cong s^{\prime} \times 0^{2}$

$$
\pi_{1}\left(x_{0}\right) \cong \mathbb{z}
$$

example:
$T=$ trefoil

$$
\pi_{1}\left(x_{\tau}\right) \cong\left\langle x, y \mid x^{2}=y^{3}\right\rangle \quad \text { (check) }
$$

note $\pi_{1}\left(x_{T}\right)$ maps onto $\left\langle x, y \mid x^{2}=1=y^{3}\right\rangle$

$$
\cong \mathbb{Z}_{2} * \mathbb{Z}_{3}
$$

$\therefore T \nsim$ unknot
to what extent does $\pi_{1}\left(X_{k}\right)$ determine K ?

Th ${ }^{\text {m }} 13$ (Dehn 1910 modulo hes"(emma"):

$$
\pi_{1}\left(x_{k}\right) \cong \mathbb{Z} \Leftrightarrow K \sim U
$$

first a lemma
Lemma 14:
K a knot in S^{3} then

$$
H_{i}\left(X_{K}\right) \cong\left\{\begin{array}{ll}
飞 & \imath=0 \\
飞 & 2=1 \\
0 & \imath \geq 2
\end{array} \text { gen by } \mu\right.
$$

$\mu=[\partial$ meridicaical disk in $N(k)] \in H_{1}(\partial N) \subset H_{1}\left(\partial X_{k}\right)$
let λ be a simple closed curve on ∂X_{k} that intersects μ transversely in one point

Proof: apply Mayen-Vietoris to X_{K} and $N(K)$
erencise: Δ an isomorphism (recall def n of Δ)

$$
\therefore H_{2}(X(K))=0
$$

note: $H_{l}(X(K)) \cong \mathbb{Z}$
now we know
$\phi(\mu)=(a, 0)$ some a and b

$$
\phi(\lambda)=(b, 1)
$$

for these to generate $\mathbb{Z} \oplus \mathbb{Z}$ need $a=1$ so $\mu \subset X_{k}$ generates $H_{1}\left(X_{k}\right)$

Proof of $T h \underline{m} 13$:

$$
\begin{aligned}
& \Leftrightarrow \text { clear ! } \\
& \Leftrightarrow \pi_{1}\left(x_{k}\right) \cong \mathbb{Z}
\end{aligned}
$$

X_{k} irreducible (corollary of Sahionflies)

$$
\begin{aligned}
& \therefore X_{k} \cong S^{1} \times D^{2} \text { by } T h m q \\
& \text { let } D=\{p t\} \times D^{2} \subset X_{k} \\
& \partial D=c \mu+d \lambda \text { in } H_{l}\left(X_{k}\right) \\
& {[\partial D]=0 \text { in } H_{l}\left(X_{k}\right)}
\end{aligned}
$$

ad rel prime since ∂D embedded
$\therefore c=0$ and $|d|=1$

so \exists an annulus $A \subset N(K)$ st.

$$
\partial A=K \cup \partial D
$$

$\therefore K=\partial(D \cup A)$ and K the unknot
Remark: 1) $\pi_{1}\left(X_{K}\right)$ does not determin K in general

These are not isotopic but have ism π_{1}
2) If K_{1} is prime and $\pi_{1}\left(X_{K_{1}}\right) \cong \pi_{1}\left(X_{K_{2}}\right)$
then \exists homeomorphism $\phi: s^{3} \rightarrow s^{3}$ st. $\phi\left(K_{1}\right)=K_{2}$

A surface \sum embedded in M^{3} is

- compressible if Ja disk D CM st.
- D nE = ∂D
- ∂D is essential in Σ
(D is a compressing disk)
- in compressible if $\sum \neq S^{2}$ and not compressible
Th쓰 15:
E connected surface properly embedded in' a 3-manifold M
E is incompressible

$$
\Leftrightarrow
$$

the inclusion $2: \Sigma \rightarrow \mu$ induces an injection $\tau_{k}: \pi_{1}(\Sigma) \rightarrow \pi_{1}(M)$

Proof: $\left(\Leftarrow \sum\right.$ compressible $\Rightarrow \exists$ disk $D \subset M$ st.
$[\partial D] \subset[$ is essential but
$z_{*}(\partial D)=0$ in M so $\operatorname{ker} 2_{x} \neq 0$
$($ let $M \backslash \Sigma=\overline{M-N(\Sigma)}$

$$
N(\Sigma)=\Sigma \times[-1.1]
$$

get 2 copies $\Sigma_{t}=\Sigma x\{ \pm 1\}$ in $\partial(M, \Sigma)$
Claim: $\pi_{1}(\Sigma) \longrightarrow \pi_{1}(M)$ one-to-one
$\pi_{1}\left(\Sigma_{ \pm}\right) \rightarrow \pi_{1}(\mu \mid \Sigma)$ one-to-one for t or -
indeed: (\Rightarrow) suppose $\pi_{1}\left(\Sigma_{t}\right) \rightarrow \pi_{1}(M i \Sigma)$
is not one-to-one
then $\pi_{1}\left(\Sigma_{+}\right) \rightarrow \pi_{1}(\mu \backslash \Sigma) \rightarrow \pi_{i}(\mu)$
not one-to-one
$\therefore \pi_{1}(\Sigma) \rightarrow \pi_{1}(\mu)$ not one-to-one
since Σ is isotopic to Σ_{+}.
\Leftrightarrow suppose $\pi_{1}(\Sigma) \rightarrow \pi_{1}(M)$ is
not one-to-one
so $\exists f:\left(D^{2}, s^{\prime}\right) \rightarrow(M, \Sigma)$ sit. $\left[\left.f\right|_{s^{\prime}}\right] \neq 0$ in Σ
make f transverse to Σ
then $f^{-1}(\Sigma)=11$ simple closed curves I1 arcs

Can assume no arcs: since arcs
break D^{2} into subdisks $D_{1} \ldots D_{n}$
with ∂ on Σ
one must have $\partial \neq 0$ in Σ or
else $\left[\partial D^{2}\right]=0$ in $[$
just restrict f to this disk
let γ be an innermost s.c.c.
and E the disk it bounds

Case 1: fl r inessential in Σ
define $f_{1}: D^{2} \rightarrow M$ by

$$
\begin{aligned}
& \left.f_{1}\right|_{\bar{\Sigma}-E}=\left.f\right|_{\overline{\Sigma-E}} \\
& \left.f_{1}\right|_{E} \subset \Sigma
\end{aligned}
$$

small homotopy of f_{1} gives new disk with fewer sc. of $1 \mathrm{w} / \Sigma$

Case 2: $f l_{\gamma}$ is essential in Σ
by shrinking $N(\Sigma)$ can assume
$N(\Sigma) \cap E=$ annulus A
let $E_{0}=\overline{E-A}$
$f\left(\partial E_{0}\right) \subset \Sigma_{ \pm}$, say Σ_{+}
then $\pi_{1}\left(\Sigma_{t}\right) \rightarrow \pi_{1}$ (MIL)
is not one-to-one/
now we know $\pi_{1}\left(\Sigma_{+}\right) \rightarrow \pi_{1}(M \backslash \Sigma)$ is note one-to-one
by the Disk Theorem J disk D CM UE
such that ∂D essential in Σ_{+}
$\therefore \exists$ a disk $D^{+} C M$ st. $D^{+} \cap \Sigma=\partial D^{+}$
is essential in Σ (add $\partial D \times\left[a_{1} 1\right]$ in $N(\Sigma))$
$\therefore \Sigma$ is compressible
a 3 -manifold M is called Haken if it is compact, irreducible, and contains an in compressible surface

Facts: 1) M Haken $\Rightarrow \pi_{1}(M)$ is infinite
(lemma $5 \Rightarrow \pi_{2}(M)=0$
\therefore by lemma 2 universal cover $\simeq \mathbb{R}^{3}$ and $\left.\pi_{i}(\mu)=0 \quad \forall 2 \geq 2\right)$
2) If M irreducible and $H_{1}(M)$ is infinite then M Haken

One can iTeratively cut a Haken manifold along incompressible surfaces until all thoth left are 3-balls
Using this one can easily prove lots of things for example
Th兹:
M, N closed is reducible 3-mfds with N Haken If $f: M \rightarrow N$ st $f_{6}: \pi_{1}(M) \rightarrow \pi_{c}(N)$ an som then $f \simeq$ homeomorphism
now let's prove
Thus 4 (Disk Th $\stackrel{m}{ }$, Dehorn's lemma, Papa 1957):
let M be an orientable 3-manifold, $\sum \subset \partial M$ a surface, and $f:\left(D^{2}, s^{\prime}\right) \rightarrow(M, \Sigma)$ st. $\left[f I_{s^{\prime}}\right] \neq 1$ in $\pi_{l}(\Sigma)$
Then \exists an embedding $e:\left(D_{1}^{2} S^{\prime}\right) \rightarrow(M, \Sigma)$ sot.
$\left.e\right|_{S^{\prime}}$ is essential (ie doesn't bound a disk) in Σ
for this we need
Fact: $f: \Sigma^{2} \rightarrow M^{3}$ a genenci smooth map, then the singularities (non-embedded points) will consist of

and

by a homotopy we can assume all our maps are genenci and we do that from now on
let $S(f)=\overline{\left\{x \in \Sigma: f^{-1}(f(x)) \neq\{x\}\right\}}$
$=U$ immersed circles and properly embedded arcs both with transvers M's and self n's
$\Sigma(f)=f(S(f)) \subset M=$ union of double curves and arcs

note: we can assume $f\left(\right.$ int $\left.^{2} \Sigma\right) \cap \partial M=\varnothing$

we will always assume this
exenccse: given $f: \Sigma \rightarrow M$ generic
Show \exists a homotopy (but not nee. smooth) to a smooth map $\bar{f}: \Sigma \rightarrow M$ with no branch points
hint: "merge" branch points or "push them" off the boundary
a double curve is simple if it is homeomorphic to S^{\prime} (It may intersect other double curves)
when trying to prove something, try simple cases first
lemma 16:
Let M, $I_{1} f$ be as in the Disk Theorem and $f l_{\text {ubhd }}$ embedded if $\Sigma(f)$ contains only simple double curves then the conclusion of the Disk Theorem holds
not all double curves simple
egg.

exencise: try to visualize this!
if $\tau(f)$ not simple, then use covering trick!
"intersections simplify in covers"
egg.

(note all are simple so could use lemma 16 but let's not)
"on dish"
 "on finger"

In a 2 -fold coven of a ubld of $f\left(D^{2}\right)$ you see

on $\tilde{\Sigma}_{1}$ only see
lemma 17:
Let $M, \Sigma_{1} f$ be as in the Disk Theorem and $f l_{\text {ubhd }}$ embedded
let N be a regular nile of $f\left(D^{2}\right)$ and \tilde{N} a 2 -fold coven if \exists an embedding $f_{1}: D^{2} \rightarrow \tilde{N}$ st po $f_{1}\left(\partial D^{2}\right)$ is essential in Σ, then \exists an embedding $e_{1}: D^{2} \rightarrow M$ sit. $e\left(\partial D^{2}\right)$ is essential in Σ
but what if there is no 2 -fold coven of N ?
Lemma 18:
let M, Σ, f and N be as in lemma 17
Suppose N does not have a 2 -fold coven then the conclusion of the Disk Theorem holds

Proof of Th 色 4 :
assume $f l_{\text {nbhd } \partial D^{2}}$ an embedding
let $N=$ regular unbid of $f\left(D^{2}\right)$

- done if N has no 2 -fold coven
- done if the 분 in a 2-fold cover
so use a tower

N_{1} a reg ubld of $f_{2}\left(D^{2}\right)$ in M_{i}
$M_{i} 2$-fold cover of N_{1-1} f_{1} a $l_{1} f+$ of f_{1-1} to M_{i}
this is called a tower for $f: D \rightarrow M$
lemma 19:
for f as above, f has a finite tower such that N_{n} has no 2-fold coven
lemmas 16-19 complete the Disk theorem when $f l_{\text {nbhd }} \partial D^{2}$ is an embedding so this done by
lemma 20:
Let M, Σ, f be as in the Disk Theorem there is another map $g:\left(D_{1}^{2} \partial D^{2}\right) \rightarrow(M, \Sigma)$ st. g is an embedding near ∂D^{2} and $g\left(\partial D^{2}\right)$ is essential in Σ
we must now go back and prove lemmas
Proof of lemma 16:
let $\gamma \subset \Sigma(f)$
$\left.f\right|_{f^{-1}(\gamma)}$ is a 2 to 1 covering map of 5^{1}
so $f^{-1}(\gamma)=$

or
one simple close curve

00
two simple closed curves
let $N(\gamma)$ be a ubhd of γ in M
so $N(\gamma)=s^{1} \times D^{2}$ (since M orientable)

(1) $0 \quad(+2 a \pi)$ (2) $\pi / 2(+2 n \pi)$ (3) $\pi(+2 n \pi)$
in case (2) and (3) $D \cap N(\gamma)$ is a Mo. bios band (or 2 bands) $\varnothing D$ onentable
\therefore in case (1) and $D \cap N(\gamma)=2$ annuli

$$
\therefore f^{-1}(\gamma)=\gamma^{\prime} \Perp \gamma^{\prime \prime}
$$

$\gamma_{1}^{\prime}, \gamma^{\prime \prime}$ bound disks $D^{\prime}, D^{\prime \prime} \subset D$
Case 1: $D_{1}^{\prime} D^{\prime \prime}$ disjoint
In M "surges" f along γ

to get a map 9

more precisely replace

$$
x s^{\prime} \text { with }
$$

note $g:\left(D^{2}, \partial D^{2}\right) \rightarrow(M, \Sigma)$
and $g l_{\partial D^{2}}=f l_{\partial D^{2}}$
Case 2: $D^{\prime} \subset D^{\prime \prime}$ tor $\left.D^{\prime \prime} \subset D^{\prime}\right)$

form g by f on $D-D^{\prime \prime}$
and f on D^{\prime}
note: domain of g is a disk and $g l_{\partial D^{2}}=f l_{\partial D^{2}}$
we have elliminated γ from $\Sigma(f)$ continue with other curves in $\Sigma(f)$ untill you get embedding

Proof of lemma 17: let $\bar{f}=p \circ f_{1}$
by hypothesis $\bar{f}\left(\partial D^{2}\right)$ is essential in Σ now $\sum(\bar{f})$ contains only simple double curves (check this if not clear)
\therefore lemma $16 \Rightarrow \exists$ embedded disk $e: D^{2} \rightarrow M$ with $e\left(\partial D^{2}\right)$ essential in Σ

Proof of lemma 18: having no 2-fold covers implies there is no non trivial homomorphism $\pi_{1}(N) \rightarrow \mathbb{Z}_{2}$
thus no nontrivial homomorphism $H_{1}(N) \rightarrow \mathbb{Z}_{2}$
(since $\pi_{1}(N) \rightarrow H_{1}(N)$ is abelanization)
now $H^{\prime}\left(N_{1} \mathbb{Z}_{2}\right)=\operatorname{Hom}\left(H_{1}(N), Z_{2}\right) \oplus E_{x}+\left(H_{0}(N), \mathbb{Z}_{2}\right)$ universal coefficient th m

$$
=0
$$

the exact sequence for $(N, \partial N)$ gives

$$
\begin{array}{cc}
H_{2}\left(N, \partial N ; \mathbb{Z}_{2}\right) \rightarrow H_{1}\left(\partial N ; \mathbb{Z}_{2}\right) \rightarrow H_{1}\left(N ; \mathbb{Z}_{2}\right) \\
\text { sill Poncaré duality } & H^{\prime}\left(N ; \mathbb{Z}_{2}\right) \\
H^{1}\left(N ; \mathbb{Z}_{2}\right) & 0 \\
11 & 0 \\
0 & \\
\text { so coefficients } H_{1}\left(\partial N ; \mathbb{Z}_{2}\right)=0 \text { and } \partial N=\| S^{2} \\
\exists S^{2} \subset \partial N \text { st. } \partial D \subset S^{2}
\end{array}
$$

let D^{\prime} be a disk in S^{2} that $\partial 0$ bounds push the intension of D^{\prime} into N and D^{\prime} is an embedded disk with $\partial D^{\prime}=\partial D$

Proof of lemma 19:

$$
\text { consider } D^{2} \xrightarrow[f_{i-1}]{f_{i}} N_{i-1} \subset M_{i}
$$

clearly $S\left(f_{i}\right) \leq S\left(f_{1-1}\right)$
Claims: $S\left(f_{i}\right) \neq S\left(f_{1-1}\right)$
indeed, if $S\left(f_{2}\right)=S\left(f_{2-1}\right)$ then
$\left.P_{i}\right|_{f_{2}(D)}: f_{1}(D) \rightarrow f_{1-1}(D)$ is an som. on π_{1}
these are the same quotient spaces
so $\pi_{1}\left(f_{1}(D)\right) \longrightarrow \pi_{1}\left(M_{i}\right)$

$$
\begin{gathered}
\downarrow \cong \\
\pi_{1}\left(f_{1-1}(D)\right) \\
\cong
\end{gathered}
$$

since $N_{i=1}$ reg ubhd of $f_{1-1}(D)$
$\therefore\left(P_{i}\right)_{x}$ is onto $\pi_{1}\left(N_{1-1}\right)$
this contradicts $\mathrm{pi}_{i}: M_{2} \rightarrow N_{1-1}$ a 2-fold coven/
thus f_{i} has strictly fewer singularities than f_{1-1}
$\therefore \exists$ finite fowen since if $S\left(f_{n}\right)=\varnothing$ then, there is no 2-fold coven

Proof of lemma 20: let x be a double point on $f\left(\partial D^{2}\right)$

$$
\text { so } \exists x^{\prime} x^{\prime \prime} \in \partial D^{2} \text { s.t. } f\left(x^{\prime}\right)=f\left(x^{\prime \prime}\right)=x
$$

and \exists double point arc γ in $f(\partial D)$ s.t. $x \in \partial \gamma$ since we arranged no branch points $\partial \gamma=\{x, y\}$ with y another double pt in $f\left(\partial D^{2}\right)$ we now have either $x^{\prime} x^{\prime \prime}$ or

in the first case we can surges along γ to get

the proof of the sphere theorem is similar (or one can use the disk th M to prove it)

