III. Dish & Sphere Theorem

A. <u>Recollections from Algebraic Topology</u>

• 
$$p: \widetilde{X} \to X$$
 a covering space  
i) then  $p_{*}: T_{i}(\widetilde{X}) \to T_{i}(X)$  an isomorphism  $\forall i \ge 2$ 

z) if 
$$f: Y \to X$$
 is a map st.  $f_*(\pi, (Y)) \subset \rho_*(\pi, (\tilde{X}))$   
then  $f$  lifts to  $\tilde{X}$  is:  
 $\tilde{f}_* \to \tilde{X}$   
 $Y \to X$ 

• X connected space  

$$\exists$$
 thurewice map  $h_n: \pi_n(X) \rightarrow H_n(X)$   
 $h_i$  on  $\pi_i$  is a belianization  
 $(12 h_i onto and ker h_i = [\pi_i(X), \pi_i(X)])$ 

Hurewiz 
$$Th^{\underline{m}}$$
:  
 $T_{i}(X) = 1 \text{ and } n \ge 2$   
 $Then \quad T_{i}(X) = 0 \quad \forall z \le i \le n$   
 $\overleftarrow{H_{1}(X)} = 0 \quad \forall z \le i \le n$   
 $H_{1}(X) = 0 \quad \forall z \le i \le n$   
and if this holds then  $h_{n}: T_{i_{n}}(X) \longrightarrow H_{n}(X)$   
 $is an isomorphism$ 

1) 
$$f_*: \pi_i(x) \to \pi_i(Y)$$
 an isomorphism for all  $i$   
then  $f$  a homotopy equivalence  
2)  $\pi_i(x) \cong \pi_i(Y) = 1$  and  $f_*: H_i(x) \to H_i(Y)$   
an isomorphism for all  $i$ , then  
 $f$  is a homotopy equivalence

• X is a 
$$K(\pi_{i})$$
 (or aspherical) if X is connected,  
 $\pi_{i}(x) = \pi_{i}$  and  $\pi_{i}(x) = 0$   $\forall i \ge 2$ 

• Poincaré (Cefschetz) Duality:  

$$M$$
 compact, oriented, n-manifold, then  
 $H_q(M) \cong H^{n-q}(M, \Im M)$   
 $H_q(M, \Im M) \cong H^{n-q}(M)$ 

· Universal Coefficients The:

 $H^{n}(X,A;\mathbb{Z}) \cong Free(H_{n}(X,A;\mathbb{Z})) \oplus Tor(H_{n-1}(X,A;\mathbb{Z}))$ 

B. Algebraic Topology and 3-manifolds

We can use simple algebraic topology to understand certain 3-milds upto homotopy

lemma 1:

Ma closed connected 3-mfd  $\pi_i(M) = 1 \iff M \approx 5^3$ motopy equiv.

later we will see much more is true

 $\frac{Proof}{(E)}$  $( \rightarrow) \pi_{i}(M) = 1 \Rightarrow H_{i}(M) = 0 \quad (so M \text{ orientable})$  $H_{2}(M) \cong H'(M) \cong Free H_{1}(M) \otimes Tor H_{0}(0) = 0$ Poincaré Univ. Coeff. Duality Thm  $H_3(M) \cong H_0(M) \cong \mathcal{E}$  (since closed, conn. 3-mfd) thus Hurewicz Ham = T3 (M) = H3(M) =  $: \exists f: 5^3 \rightarrow M \quad s.t. \quad [f] generates \pi_3 = H_3$ So we see fx: H3(53) -> H3(M) an uson :. f, an womorphism on Hi. Vi since 53, M simply connected, Whitehead's the implies f is a homotopy equil

lemma 2:

M non-compact, connected 3-manifold with DM=0  $\pi(M) \cong \pi(M) \cong 1 \iff M \cong \mathbb{R}^3$ <u>Proof</u>: (⇐) ✓ (=) M non-compact =>  $H_1(M) = 0$   $H_1' = 3$  $\mathcal{T}_{i}(\mathcal{M}) = \mathcal{T}_{z}(\mathcal{M}) = 0 \implies H_{i}(\mathcal{M}) = H_{z}(\mathcal{M}) = 0$  $: H_{2}(M) = O \quad \forall i \geq l$ let f: M-> \* be constant map finduces ison. on all H: :. f is a homotopy equiv # Earlici we looked at embedded 2-spheres What about non-embedded ones (re. coming from T\_(M)); The 3 ( Sphere The; Papakyriakapoulos 1957, Whitehead 1958) let M be an orientable 3-manifold  $f: 5^{\sim} \rightarrow \mathcal{M}$  be a map st  $[f] \neq 0$  in  $\pi_2(\mathcal{M})$ Then I an embedding e: 5 -> M st.  $[e] \neq 0$  in  $\pi_2(M)$ 

 $\frac{Th \stackrel{m}{\to} 4 \text{ (Disk } Th \stackrel{m}{\to} \text{ Dehn's lemma, Pape [957]:}}{\text{let } M \text{ be an orientable } 3-\text{manifold, } Z \in \partial M \text{ a surface,}} \\ and f: (D^2, 5') \rightarrow (M, Z) \text{ s.t. } [f_{5'}] \neq 1 \text{ in } T_{1}(Z) \\ Then B an embedding e: (D^2, 5') \rightarrow (M, Z) \text{ s.t.}} \\ el_{5'} \text{ is essential (i.e. doesn't bound a disk) in } \Sigma$ 

We prove the disk the later (sphere the similar) but first let's see some consequences Basically both theorems turn algebaic into into geometric into. This is rare and very helpful!

$$\frac{lemma 5}{M}$$

$$M \text{ an orientable 3-manifold. Then}$$

$$M \text{ irreducible } (\mathcal{M}) = 0$$

(E) for this we need  
Poincaré Conj (proven by Perelman ~2003)  
if 
$$M = 3$$
-monifold  $= 5^3$  then  $M \cong 5^3$ 

let 
$$S \subset M$$
 be an embedded sphere  
 $T_{2}(M)=0 \Longrightarrow [S]=0$  in  $T_{2}(M)$   
 $\Longrightarrow [S]=0$  in  $H_{2}(M)$   
 $\Longrightarrow S$  separates  $M$   
errencise: prove this!  
 $SO M = A U_{S} B$   
 $A : B$ 

let 
$$\widehat{\mathcal{M}} \stackrel{P}{\rightarrow} \mathcal{M}$$
 be the universal cover  
 $P^{-1}(A) = copies of \widetilde{A} (\widetilde{A} univ cover of A)) check this
 $p^{-1}(B) = \cdots : \widetilde{B} (\widetilde{B} : \cdots : B)) \stackrel{Q}{a} \ge sphere$   
 $\Im \widetilde{A} = |\mathcal{T}_{1}(A)| copies of S$   
 $\Im \widetilde{B} = |\mathcal{T}_{1}(B)| : \cdots : \cdots$   
let  $\widetilde{S}_{0}$  be a lift of S  
 $\mathcal{T}_{2}(\mathcal{M}) = 0 \Rightarrow \mathcal{T}_{2}(\widetilde{\mathcal{M}}) = 0 \qquad H_{2}(\widetilde{\mathcal{M}}) = 0$   
 $\mathcal{T}_{1}(\mathcal{A}) = 0 \end{cases} \stackrel{Q}{\rightarrow} H_{2}(\widetilde{\mathcal{M}}) = 0$   
 $\mathcal{T}_{2}(\mathcal{M}) = 0 \Rightarrow \mathcal{T}_{2}(\widetilde{\mathcal{M}}) = 0$   
 $\mathcal{T}_{1}(\mathcal{A}) = 0 \end{cases} \stackrel{Q}{\rightarrow} H_{2}(\widetilde{\mathcal{M}}) = 0$   
 $\mathcal{T}_{2}(\mathcal{M}) = 0 \Rightarrow \mathcal{T}_{2}(\widetilde{\mathcal{M}}) = 0$   
 $\mathcal{T}_{2}(\mathcal{M}) = 0 \Rightarrow \mathcal{T}_{2}(\widetilde{\mathcal{M}}) = 0$   
 $\mathcal{T}_{2}(\mathcal{M}) = 0 \Rightarrow \mathcal{T}_{2}(\widetilde{\mathcal{M}}) = 0$   
 $\mathcal{T}_{2}(\mathcal{M}) = 0$   
 $\mathcal{T}_{2}(\mathcal$$ 

A 
$$\cup B^3$$
 is a closed 3-mfd with  $\pi_i = 1$   
 $\therefore$  Poincaré  $\Rightarrow$  A  $\cup B^3 \cong S^3$  and  
 $SO A \cong B^3$   
 $\therefore S = \Im(A = B^3)$  So M inveducible  $\blacksquare$ 

Av B<sup>3</sup> is a closed 3-mild with 
$$\pi_{i} = 1$$
  
 $\therefore$  Buicaré  $\Rightarrow$  Av B<sup>3</sup>  $\equiv$  S<sup>3</sup> and  
So A  $\pm$  B<sup>3</sup>  
 $\therefore$  S=  $\Im$ (A = B<sup>3</sup>) So M inveducible B<sup>4</sup>  
  
Proof of lemma 6<sup>1</sup>  
( $\notin$ ) clear  
( $\#$ ) [ $\Sigma$ ] = 0 in H<sub>2</sub>(M)  $\Rightarrow$   $\exists$  a compact submfol  
 $M_{0} \subset M$  st. [ $\Sigma$ ] = 0 in H<sub>2</sub>(M<sub>0</sub>)  
So we can assume M is compact  
need to show  $\Im M = \Sigma$   
Suppose not, long exact sequence of (M,  $\Im M$ ) gives  
H<sub>3</sub>(M)  $\rightarrow$  H<sub>3</sub>(M,  $\Im M$ )  $\rightarrow$  H<sub>2</sub>( $\Im M$ )  
 $M^{11}$   $M^{12}$  H<sup>0</sup>( $\Im M$ )  
 $M^{11}$   $M^{13}$   $H^{0}(2M)$   
 $M^{11}$   $M^{13}$   $H^{0}(2M)$   
 $M^{11}$   $H^{13}$   $H^{0}(M)$   
 $M^{13}$   $H^{13}$   $H^{0}(M)$   
 $H^{13}$   $H^{13}$   $H^{13}$   $H^{13}$   
 $Z^{13}$   $M^{13}$   $H^{13}$   
 $Z^{13}$   $M^{13}$   $H^{13}$   $H^{13}$   
 $H^{13}$   $H^{13}$   $H^{13}$   $H^{13}$   
 $H^{13}$   $H^{13}$   $H^{13}$   $H^{13}$   
 $H^{13}$   $H^{13}$   $H^{13}$   $H^{13}$   $H^{13}$   
 $H^{13}$   $H^{13}$   $H^{13}$   $H^{13}$   $H^{13}$   
 $Z^{13}$   $H^{13}$   $H^{13}$ 

the inclusion 
$$i_{*}$$
  $H_{\delta}(\mathcal{F}_{M}) \xrightarrow{i_{*}} H_{\delta}(\mathcal{M})$   
 $H_{\delta}(\mathcal{F}_{M}) \xrightarrow{i_{*}} H_{\delta}(\mathcal{M})$   
 $H_{\delta}(\mathcal{F}_{M}) \xrightarrow{i_{*}} H_{\delta}(\mathcal{M})$   
 $H_{\delta}(\mathcal{F}_{M}) \xrightarrow{i_{*}} H_{\delta}(\mathcal{M})$ 

since  $l^*$  and  $l_*$  are dual we see  $l^{*}(1) = (1, ..., 1)$  $\therefore [Z] \text{ not in the image of } 2^* \text{ unless } \partial M = Z$  $\therefore [Z] \neq 0 \text{ in } H_2(M) \text{ unless } \partial M = Z$ 

Th = 7:

let 
$$\mathcal{M}$$
 be a closed 3-manifold with univ. cover  $\widetilde{\mathcal{M}}$   
i) if  $\pi_i(\mathcal{M})$  is finite, then  $\widetilde{\mathcal{M}} \cong 5^3$   
if  $\pi_i(\mathcal{M})$  is infinite and  $\mathcal{M}$  is prime then  
z)  $\widetilde{\mathcal{M}} \cong \mathbb{R}^3$  or  
3)  $\mathcal{M} \cong 5^1 \times 5^2$  (so  $\widetilde{\mathcal{M}} \cong \mathbb{R} \times 5^2$ )

Proof: 1)  $T_{i}(M)$  finite  $\Rightarrow M$  compact,  $T_{i}(M) = 1$   $\therefore$  lemmo  $1 \Rightarrow M = 5^{3}$ now Poincaré  $\Rightarrow M \equiv 5^{3}$ if  $T_{i}(M)$  infinite and M prime, then  $Th^{m}II. 1 \Rightarrow M$  is  $5'x5^{2}$  or irreducible if not  $5'x5^{2}$  then lemma 5 says  $T_{2}(M) = 0$   $\therefore T_{i}(M) = T_{2}(M) = 0$  M non-compact then  $\Rightarrow M = R^{3}$  by lemma 2 the geometrization conjecture (discussed later) then  $\Rightarrow M \equiv R^{3}$ 

i) if M is a closed prime 3-manifold with  $T_i(M) \cong \mathbb{Z}$ then  $M \cong 5' \times 5^2$ 

2) if M, N closed prime 3-manifolds with Ti(M)= Ti(N) intrinite, then MEN

## Proof:

1) <u>Claim</u>:  $\pi_{z}(M) \neq 0$ Suppose not, then 2) of  $\pi h^{m} 7$  must hold  $\therefore \pi_{1}(M) \cong \pi_{1}(M) = 0 \quad \forall i \geq 2$ let  $f: 5' \rightarrow M$  be a map st. [f] generates  $E \equiv \pi(M)$   $\pi_{1}(5') = 0 \quad \forall i \geq 2$   $\therefore f: \pi_{1}(5') \rightarrow \pi_{2}(M) \approx csomorphism \quad \forall z'$ so f is a homotopy equivalence  $\therefore H_{2}(M) \cong H_{2}(S') = 0$ but  $H_{2}(M) \cong H'(M) \cong free \quad H_{1}(M) \cong E \quad \&$  $\therefore \pi_{1}(M) \neq 0$ 

since  $\pi_2(M) \neq 0$ , case 3) of Th = 7 holds and so  $M \cong 5' \times 5^2$ 

z) M, N prime,  $\pi_i(M) = \pi_i(N)$ if  $\pi_i(M) \cong \mathbb{Z}$  then  $M \cong 5' \times 5' \cong N$ if  $\pi_i(M) \notin \mathbb{Z}$  then  $\pi_i^m = 7$  says  $\tilde{M} \& \tilde{N} \cong \mathbb{R}^3$   $\therefore \pi_i(M) \cong \pi_i(N) \forall i$ so M and N are " $K(\pi(M), 1)$ " spaces

re all hyper homotopy groups varish and This are isom. this = M ~ N ( if you have not seen this before prove this!) now again geometrization => MEN (since prime) Th=9: let M be a compact, irreducible 3-manifold with TI(M) free, then M is a handlebody (or 53)

need 3 lemmas

<u>lemma 10</u>:

let I be a closed surface  $\# 5^2$ then  $\pi, T$  is not free

Proof: suppose  $\pi_i \Sigma$  is free for rank nlet  $X = \bigvee_{n=1}^{i} S^{i}$  for wedge of n circles then  $\exists f: X \rightarrow \Sigma$  s.t.  $f_{x}: \pi_{i} X \rightarrow \pi_{i} \Sigma$  is an isom. the universal cover of  $\Sigma$  is  $\widetilde{\Sigma} \subseteq \mathbb{R}^{2}$  $\therefore \pi_{i}(\Sigma) = 0 \quad \forall z \equiv Z$ 

we also know  $T_1(X) = 0 \quad \forall i \ge 2$ : Have with says f is a homotopy equivalence so we must have  $f_*: H_2(X) \rightarrow H_2(\Sigma)$  an isom  $\bigotimes_{i \le 1}^{i'}$ 

lemma 11:

any subgroup of a free group is free

Proot: G a free group then  $G \cong \pi_{i}(X)$  some  $X = \bigvee_{x = 1} S'$ let H be a subgroup of G then I a covering space  $\widetilde{X} \to X$  s.t.  $T_{i}(\widetilde{X}) \in H$ but X a 1- complex so TI (X) is free

lemma 12: Ma compact orientable 3-manifold with  $H_i(M)$  finite then  $\partial M \cong II S^2$ 

$$\frac{Proof}{Proof}: H_2(M, \mathcal{M}) \cong H'(M) \cong \text{free } H_1(M) = O$$

$$\frac{Poincaré}{duality} \xrightarrow{M_1 \otimes \dots \otimes M_1} F_1(M) = O$$

Now the exact sequence for 
$$(M, \partial M)$$
 gives  
 $H_2(M, \partial M) \rightarrow H_1(\partial M) \rightarrow H_1(M)$   
 $H_2(M, \partial M) \rightarrow H_1(M)$ 

:.  $H_{i}(\partial M)$  finite and since the only finite group that is  $H_{i}(\text{oneitable sfc})$  is 0 we see  $H_{i}(\partial M) = 0$  $\therefore \partial M = 115^{2}$ 

Proof of 9: suppose 
$$T_{i}(M)$$
 free of rank  $M$   
we prove theorom by induction on  $N$   
 $\underline{n=0}$ :  $T_{i}(M) = 1$   
if  $\partial M = \emptyset$  then from  $Th^{\underline{m}}7$   $M \cong 5^{3}$   
if  $\partial M \neq \emptyset$  then  $\partial M = \# 5^{2}$  (lemma 12)  
 $M$  irreducible  $\Rightarrow M \cong D^{3}$   
(is: handle body of genus 0)  
 $\underline{n \ge 1}$ :  $M$  irreducible  $\Rightarrow T_{2}(M) = 0$  (lemma 5)  
 $T_{i}(M)$  infinite  $\Rightarrow$  universal cover  $\widetilde{M}$  is non-compact  
 $\therefore H_{i}(\widetilde{M}) = 0 \forall i \ge 3$   
we know  $T_{i}(\widetilde{M}) \equiv T_{i}(M) \forall i \ge 2$   
 $\therefore T_{2}(\widetilde{M}) = 0$  and  $T_{i}(\widetilde{M}) = 0$   $\forall i \ge 3$  by Hureuce  
let  $X = \bigvee_{i=1}^{N} s^{i}$   
 $\exists f: X \Rightarrow M$  s.t.  $f_{x} : T_{i}(X) \Rightarrow T_{i}(M)$  is ison  $\forall i$   
 $\therefore f$  is a homotopy equivalence by Whitehead  
 $\therefore f_{y} : H_{i}(X) \Rightarrow H_{i}(M)$  an youn  $\forall i$   
 $50 H_{3}(M) \cong H_{3}(X) = 0 \therefore \partial M \neq \emptyset$   
if some component of  $\partial M$  is  $S^{2}$  then  $M$  unded  
 $\Rightarrow M \cong D^{3} \Rightarrow T_{i}(M) = 1$   $\bigotimes$   
so let  $\Sigma$  be a component of  $\partial M$  with genus  $\Sigma > 0$   
by lemma  $10 \ge 11$   $T_{i}(F) \Rightarrow T_{i}(M)$  is unit  
 $OM = T_{0} - OM = 0$ 

$$\frac{2 \text{ cases:}}{\text{ i) } D \text{ separates } M$$
So  $\overline{M \setminus N(D)} = M_1 \amalg M_2$ 

$$\overline{T_1(M_1)} = \overline{T_1(M_1)} * \overline{T_1(M_2)}$$

$$\therefore \overline{T_1(M_1)} \text{ free of rank } n_i \text{ by lemma } 11$$
with  $n_1 + n_2 = n$ 
and  $\partial M_i \neq \emptyset$ 

$$(\underline{\text{launi: }} n_i = 0$$
if not, say,  $n_1 = 0$ , then  $M = D^3$ 
 $\therefore \partial D$  bounds disk in  $\Sigma \not M$ 

$$\therefore N_i < N$$

$$Clearly M_i \text{ is irreducible (check if not clear!)}$$

$$\therefore b_Y \text{ induction the } M_i \text{ are handleboches}$$

$$\therefore M \text{ is a handlebody (lemma I.1)}$$

$$2) D does not separate M$$
So  $\overline{M \setminus N(D)} = M_0$ 

$$\overline{T_1(M_0)} \equiv \overline{T_1(M_0)} * \mathcal{Z} \text{ (check)}$$
So  $\overline{T_1(M_0)} \text{ free of rank } < N$ 
 $M_0 \text{ o irreduceby and } \partial M_0 \neq M$ 

$$\therefore M_0 \text{ o handlebody}$$



recoll a knot K is the image of an embedding 
$$f_{k}: S' \rightarrow S^{3}$$
  
K, ~ K\_{2} (equivalent) if  $\exists$  an isotopy from  $f_{K_{1}}$  to  $f_{K_{2}}$   
(recall isotopy extension says  $\exists$  an isotopy  
 $F_{E}: S^{3} \rightarrow S^{3}$  st.  $F_{0}: id$  and  $f_{K_{2}} = F_{1} \circ f_{K_{1}}$   
so  $\exists$  a diffeo  $F_{1}: S^{3} \rightarrow S^{3}$  st.  $F_{1}(K_{1})=K_{2}$ )  
K is trivial if ~ the inhinot  $U = \bigcirc$   
the group of K is  $\pi_{1}(S^{3} \setminus K)$   
 $K_{1} \sim K_{2} \Rightarrow \pi_{1}(S^{3} - K_{1}) \cong \pi_{1}(S^{3} - K_{2})$   
the extension of K is  $X_{K} \equiv \overline{S^{3} - N(K)}$   
 $\Im X_{K} = \tau^{2}$   
 $\pi_{1}(X_{K}) \cong \pi_{1}(S^{3} - K)$   
 $mote: X_{U} \cong S' \times D^{2}$   
 $rightarrow K$   
 $T = trefoil$   
 $\pi_{1}(X_{T}) \cong (X, Y) \times X = Y^{3}$  (chech)  
mote  $\pi_{1}(X_{T}) \operatorname{maps}$  anto  $(X, Y) \times X = Y^{3}$   
 $: T \neq unknot$ 

to what extent does The (XK) determine K?

 $\frac{Th^{m} 13 (Dehn 1910 modulo hs`lemma'')}{\pi_{i}(X_{K}) \cong \mathcal{Z} \iff K \sim U}$ 

first a lemma

$$\begin{array}{c} \hline lemma \ 14: \\ K \ a \ knot \ in \ 5^{3} \ then \\ H_{i}(X_{K}) \stackrel{\sim}{=} \begin{cases} \mathcal{Z} & 2=0 \\ \mathcal{Z} & 2=1 \\ \mathcal{Z} & 2=1 \end{cases} \\ 0 & 1 \ge 2 \end{cases}$$

$$M = \left[ \frac{\partial}{\partial m} e^{-i\lambda} d^{i} d^{$$

$$\begin{array}{c} Proof: apply Mayer-Vietoris to X_{K} & and N(K) \\ O \rightarrow H_{3}(S^{3}) \xrightarrow{A} H_{2}(\Im N) \rightarrow H_{2}(X_{K}) \oplus H_{2}(N(K)) \rightarrow H_{2}(S^{3}) \\ \stackrel{Sil}{\swarrow} & \stackrel{Sil}{\swarrow} & \stackrel{O}{\Im} & \stackrel{O}{\bigcirc} \\ \xrightarrow{H_{1}} (\Im N) \xrightarrow{A} H_{1}(X_{K}) \oplus H_{1}(N(K)) \rightarrow H_{1}(S^{3}) \\ \stackrel{IIS}{\swarrow} & \stackrel{IIS}{\swarrow} & \stackrel{IIS}{\Im} & \stackrel{IIS}{\Im} \\ \xrightarrow{H_{2}} & \stackrel{O}{\swarrow} & \stackrel{O}{\Im} \\ \xrightarrow{H_{3}} & \stackrel{O}{\Im} & \stackrel{O}{\longrightarrow} \\ \xrightarrow{H_{3}} & \stackrel{O}{\Im} \\ \xrightarrow{H_{3}} & \stackrel{O}{\longrightarrow} \\ \xrightarrow{H_{3$$

<u>errencise</u>:  $\Delta$  an isomorphism (recall def  $\overset{n}{}$  of  $\Delta$ )  $\therefore$   $H_{z}(X(K)) = O$ 

note: H,(X(K)) ⊆ Z

granny huot Square knot

These are not isotopic  
but have isom 
$$\pi$$
,  
z) If  $K_1$  is prime and  $\pi_1(X_{K_1}) \cong \pi_1(X_{K_2})$   
Then  $\exists$  homeomorphism  $\phi: S^3 \rightarrow S^3$  s.f.  $\phi(K_1) = K_2$ 

A surface Z embedded in 
$$M^3$$
 is  
• compressible if  $\exists a \ disk \ D \ C \ M \ st.$   
•  $D \ D \ Z \ = \partial D$   
•  $\partial D \ is \ essential \ in \ Z$   
( $P \ is \ a \ compressible \ if \ Z \ \mp \ S^2 \ and \ not$   
compressible

$$\frac{Th^{\underline{m}} 15}{\Sigma \text{ connected surface properly embedded in a 3-manifold M}}$$

$$\Sigma \text{ is incompressible}$$

$$(\Rightarrow)$$

$$\text{the inclusion } z: \Sigma \rightarrow M \text{ induces}$$

$$an \text{ injection } 1_{\underline{w}}: T_{1}(\Sigma) \rightarrow T_{1}(M)$$

$$\frac{Proof}{(\Leftarrow)} \subset compressible \Rightarrow \exists disk D \subset M st.$$

$$[\exists D] \subset \Box is essential but$$

$$\exists_{*}(\exists D) = 0 \text{ in } M so \text{ ker } 4 \neq 0$$

$$(\Rightarrow) let M (\Sigma = \overline{M - N(\Sigma)})$$

$$N(\Sigma) = \Sigma \times [-1,1]$$

$$get Z copies \overline{Z}_{I} = \overline{Z} \times [\pm 1]^{2} in \partial(M \setminus \Sigma)$$

$$(claimi: T_{i}(\Sigma) \rightarrow T_{i}(M) \text{ one-to-one}$$

$$T_{i}(\Sigma_{\pm}) \rightarrow T_{i}(M \setminus \Sigma) \text{ one-to-one for t or -}$$

$$indeed: (\Rightarrow) suppose T_{i}(\Sigma_{\pm}) \rightarrow T_{i}(M \setminus \Sigma)$$

$$is not one-to-one$$

$$then T_{i}(\Sigma_{\pm}) \rightarrow T_{i}(M \setminus \Sigma) \rightarrow T_{i}(M)$$

$$not one-to-one$$

$$\vdots T_{i}(\Sigma) \rightarrow T_{i}(M) \text{ not one-to-one}$$

$$i: T_{i}(\Sigma) \rightarrow T_{i}(M) \text{ not one-to-one}$$

$$since \Sigma is isotopic to \Sigma_{\pm}$$

$$(\Leftarrow) suppose T_{i}(\Sigma) \rightarrow T_{i}(M) is$$

$$not one-to-one$$

$$so \exists f: (D^{2}, s') \rightarrow (M_{1} \Sigma) \pm f[f_{s'}] \pm 0 \text{ in } \Sigma$$

$$make f transverse to \Sigma$$

$$then f^{-1}(\Sigma) = \prod simple closed curves \prod arcs$$

$$(\bigcirc O O D^{2}$$

Can assume no arcs: since arcs



by shrinking N(I) can assume

N(I) NE = annulus A let Eo=E-A  $f(\partial E_{o}) \subset \Sigma_{\pm}$ , say  $\Sigma_{\pm}$ then  $\pi_i(\mathbb{Z}_+) \to \pi_i(M \setminus \Sigma)$ is not one-to-one/

Now we know  $T_1(\Sigma_+) \to T_1(M \mid \Sigma)$ is note one-to-one

by the Disk Theorem Jolisk D CM\E such that DD essential in It : Jadisk D<sup>+</sup> CM st. D<sup>+</sup> nI = D<sup>+</sup> is essential in I (add DX Ea I) in N(I))

: I is compressible II

a 3-manifold M is called <u>Haken</u> if it is compact, irreducible, and contains an incompressible Surface

Facts: 1) M Haken  $\Rightarrow T_1(M)$  is infinite ( lemma  $5 \Rightarrow T_2(M) = 0$ 

: by lemma 2 universal cover ~ R3 and  $\Pi_i(M) = 0 \forall 222$ 2) If M irreducible and H, (M) is infinite then M Haken

One can iteratively cut a Haken manifold along incompressible surfaces until all thats left are 3-balls Using this one can easily prove lots of things for example The MN closed irreducible 3-mfds with N Haken if f: M - N st. f: Ti (M) - Ti (N) an isom then f = homeomorphism

now let's prove

 $\frac{Th \stackrel{m}{\rightarrow} 4 \text{ (Disk Th}\stackrel{m}{\rightarrow} \text{ Dehn's lemma, Pape 1957):}}{\text{let } M \text{ be an orientable } 3-\text{manifold, } \mathbb{Z} \in \partial M \text{ a surface,}} \\ \text{and } f:(D^2, 5') \xrightarrow{\rightarrow} (M, \mathbb{Z}) \text{ s.t. } [f_{1_S}, ] \neq 1 \text{ in } T_1(\mathbb{Z}) \\ \text{Then } \exists \text{ an embedding } e:(D^2, 5') \xrightarrow{\rightarrow} (M, \mathbb{Z}) \text{ s.t.} \\ e_{1_S}, \text{ is essential (i.e. doesn't bound a disk) in } \Sigma$ 

for this we need

Fact:  $f: \Sigma^2 \rightarrow M^3$  a generic smooth map, then the singularities (non-embedded points) will consist of triple double branch points and by a homotopy we can assume all our maps are generic and we do that from now on  $let S(f) = \left\{ x \in \Sigma : f^{-1}(f(x)) \neq \left\{ x \right\} \right\}$ = () immensed circles and properly embedded arcs both with transvers N's and self N's Z(f) = f(s(f)) C M = union of double curves and arcs





<u>note</u>: we can assume  $f(int Z) \cap \partial M = \emptyset$ 



we will always assume this

<u>exercisé</u>: given f: Z > M generic Show I a homotopy (but not nec. smooth) to a smooth map  $f: Z \to M$  with no branch points hint: "menge branch points or push them" off the boundary a double curve is simple if it is homeomorphic to 5' (it may intersect other double curves)

when trying to prove something, try simple cases first

lemma 16: Let M, E, f be as in the Disk Theorem and flubhd 2D embedded if I(f) contains only simple double curves then the conclusion of the Disk Theorem holds

not all double curves simple



exercise: try to visualize this!

if T(f) not simple, then use covening trick! "intersections simplify in covers"



"on disk '

"on fingen "

(note all are simple so could use lemma 16 but let's not)

in a 2-fold cover of a nubbed of  $f(D^2)$  you see



lemma 17:

Let M, I, f be as in the Disk Theorem and flubbadd embedded let N be a regular nubbed of  $f(D^2)$  and  $\tilde{N} = 2$ -fold cover if  $\exists$  an embedding  $f_1: D^2 \rightarrow \tilde{N} \leq t$ .  $pof_1(\partial D^2)$  is essential in Z, then  $\exists$  an embedding  $e_1: D^2 \rightarrow M_{st}$ .  $e(\partial D^2)$  is essential in Z

but what if there is no 2-fold cover of N?

lemma 18:

let M, Z, F, and N be as in lemma 17 Suppose N does not have a 2-fold cover then the conclusion of the Disk Theorem holds

Proof of Thm 4:

assume flathed 2.02 an embedding let N = regular nbhd of  $f(D^2)$ · done if N has no 2-fold cover · done if the true in a 2-fold cover

so use a tower

Fi 2-fold cover  $f_o = f$  u uthis is called a tower for f: D -> M

<u>lemma 19</u>: for f as above, fhas a finite tower such that Nn has no 2-fold cover lemmas 16-19 complete the Disk theorem when flabhd 202 is an embedding so the done by lemma 20: Let M, I, f be as in the Disk Theorem there is another map  $g:(D^2, \partial D^2) \rightarrow (M, \Sigma)$ st. g is an embedding near 20° and

 $g(\partial D^2)$  is essential in  $\Sigma$ 

we must now go back and prove lemmas

Proof of lemma 16: let r c I (F) fl is a Z to I covering map of 5' so f'(x)= one simple close curre 01 tro simple closed curves let N(8) be another of 8 in M

50 N(V) = 5' × D<sup>2</sup> (since Morientable)



note 
$$g:(D^2, \partial D^2) \rightarrow (M, E)$$
  
and  $g|_{\partial D^2} = f|_{\partial D^2}$   
Case 2:  $D' \subset D''$  (or  $D'' \subset D'$ )  
 $form g by f on D - D''$   
and f on D'  
note: domain of g is a disk  
and  $g|_{\partial D^2} = f|_{\partial D^2}$ 

ve have elliminated & from Z(f) continue with other curves in Z(f) untill you get embedding

Proof of lemmo 17: let  $\overline{F} = p \circ f_i$ by hypothesis  $\overline{F}(\partial D^2)$  is essential in  $\Sigma$ now  $\Sigma(\overline{F})$  contains only simple dauble curves (check this if not clear)  $\therefore$  lemma  $16 \Rightarrow \exists$  embedded disk  $e: D^2 \rightarrow M$ with  $e(\partial D^2)$  essential in  $\Sigma$ 

<u>Proof of lemma 18</u>: having no 2-fold covers implies there is no nontrivial homomorphism  $\pi_i(N) \rightarrow Z_2$ 

thus no nontrivial homomorphism 
$$H_{i}(N) \rightarrow \mathbb{Z}_{2}$$
  
(since  $\pi_{i}(N) \rightarrow H_{i}(N)$   
is abelianization)  
now  $H'(N_{i}^{*}\mathbb{Z}_{2}) = Hom(H_{i}(N_{i},\mathbb{Z}_{2}) \oplus Ext(H_{0}(N_{i},\mathbb{Z}_{2}) \stackrel{\text{contract}}{contract})$   
 $= 0$   
the exact sequence for  $(N_{i} \ni N)$  gives  
 $H_{2}(N_{i} \ni N_{i}^{*}\mathbb{Z}_{2}) \rightarrow H_{1}(\Im N_{i}^{*}\mathbb{Z}_{2}) \rightarrow H_{i}(N_{i}^{*}\mathbb{Z}_{2})$   
 $S^{II}$  Ponceré duality  
 $H^{4}(N_{i}^{*}\mathbb{Z}_{2}) \stackrel{\text{SII}}{=} 0$   
 $H^{1}(\Im N_{i}^{*}\mathbb{Z}_{2}) = 0$  and  $\Im N = \coprod S^{2}$   
 $\exists S^{2} \subset \Im N \quad \text{st. } \Im D \subset S^{2}$   
 $\det D' be a disk in S^{2}$  that  $\Im D$  bounds  
push the interior of D' into N and D' is an  
embedded disk with  $\Im D' = \Im D$ 

Proof of lemma (9: Consider  $D^{2} \xrightarrow{f_{i} \cap N_{i} \subset M_{i}} V_{i}$ 

clearly  $S(f_i) \leq S(f_{n-1})$  $\underline{Claim}: 5(f_i) \neq 5(f_{i-1})$  indeed, if  $S(f_2) = S(f_{2-1})$  then

$$\frac{(P_i)_{\star}}{(P_i)_{\star}} is onto T_i (N_{1-1})$$

$$\frac{(N_1)_{\star}}{(N_1)_{\star}} = N_{1-1}$$

$$a \ 2 - fold \ coven /$$

thus 
$$f_i$$
 has strictly fewer singularities than  $f_{i-1}$   
 $\therefore$  I finite tower since if  $S(f_n) = \emptyset$  then, there  
is no 2-fold cour  $\blacksquare$ 

Proof of lemma 20: let x be a double point on  $f(\partial D^2)$ so  $\exists x_i' x'' \in \partial D^2$  s.t. f(x') = f(x'') = xand  $\exists$  double point arc  $\forall$  in  $f(\partial D)$  s.t.  $x \in \partial \forall$ since we arranged no branch points  $\partial \forall = \{x,y\}$ with y another double pt in  $f(\partial D')$ we now have either x' x'' or x'' y'' in the first case we can surger along & to get

Y -> (if bounds a disk can Use it to change f to remove X, Y Ħ

the proof of the sphere theorem is similar (or one can use the disk the to prove it)